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S U M M A R Y  
In this paper we investigated numerically the laminar flow of a homogeneous, viscous incompressible liquid, through a 
channel with a step. We used one numerical approach for small Reynolds numbers, and a different method for large 
numbers. Streamlines were calculated with high accuracy using a relatively small amount of computer time. 

1. Introduction 

The flow of a two-dimensional, steady-state, viscous incompressible liquid through a channel 
with a step, was investigated in detail by D. Greenspan [1]. Boundary conditions consisted of 
an initially parabolic velocity profile, and a horizontal flow and constant pressure downstream. 

Our study concentrated upon the same problem. For small Reynolds numbers R, we preferred 
a different approach than was developed in [2]. For moderate and high Reynolds numbers we 
proceeded with Greenspan's original numerical scheme but modified the computational stage. 
This helped to reduce the computer time needed for convergence by a factor of 10. We have 
also dealt with one of the problem's boundary conditions--namely the constant pressure down- 
stream--in a different manner than [1]. Thus we extended the range of convergence from small 
R to all Reynolds numbers. Finally we compiled a table of computer times for comparison. 

2. Formulation of the Problem 

Denote by u, v the horizontal and normal velocity component measured in terms of an average 
initial velocity Uo ; p is the pressure in terms of pu 2, where p is the fluid density ; x, y are the 
horizontal and normal coordinate in units of a--the width of the channel. The Navier-Stokes 

Ox + R 2 + Yy 2 (2.1) 

Oy + R \ax z + Oy2-/ (2.2) 

equations are then 

Ou Ou 
U~x+ V o y -  

Ov 8v 
UUx+ V a y -  

where 

au o R = - -  
v 

is the Reynolds number. 
The equation of continuity is 

0u dv 

Equation (2.4) introduces a stream function t)(x, y) for which 

(2.3) 

(2.4) 

U b 
Oy ' 8x" 
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0v 0u 
Define the vorticity ( = Ox 0y 

and get a new set of equations in ~, ff : 

= 

A +R(aq, aq, 
ax Oy ay ax = ~  

The channel with a step is shown by the polygon ABCDEFGH in Figure 1. 

i 

H I-at ,1) l G [a2.1 ) 

M. Friedman 

(2.6) 

(2.7) 

C ( - ~ . ~ ( ~ - ' , )  

i BI'/~,O) 0 E(~,Ol Fla2,o) A(- al.o) 

The boundary conditions are 

aO 
Ty=0, onHG 

a0 0 = 0 ,~y  = 0, on AB, DC, EF 

a0 O=0,  ~-x = 0, onBC, DE 

0 = 3 y 2 - 2 y  a, ~=12y-6 ,  o n A H  

~ x = 0 , ~ x x - R ~ y  ~ +  @2)  = 0  , 

Figure 1. 
X 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

on FG.  (2.12) 

Equation (2.11) assumes an initial parabolic velocity profile, while (2.12) satisfies the require- 
ments of horizontal flow and constant pressure far downstream. 

Remark : In [1] the second condition of (2.12) appeared as 

ax+RTy_ +? B) =~  

and as a result a wrong finite difference was deduced. However, a formal correction of the sign 
would have led towards a diverging procedure for moderate and large Reynolds numbers, due 
to a possible vanishing denominator in the difference equation. In order to solve this problem 
we used an indirect approach for the boundary FG, and ended with (3.10). 

3. The Numerical Method 

We solved (2.6)-(2.7) by relaxation and distinguished between two different cases : 
a. Small Reynolds Numbers 

We followed the technique suggested in [2], [3] for a flow in a circular pipe. 
Let o be an internal grid point, with neighbouring points 1, 2, 3, 4. Denote by h the size of the 

mesh (Figure 2). We replaced (2.6), (2.7) respectively by the difference equations: 
. 3  
I 
h 

2. lO .1 

'4 Figure 2. 
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_-__ L (O, C)- (3.1) 0 ~  4 

~o --  ( a + ~ 2 + ( 3 + ~ 4 + � 8 8  - L2(0, ~) (3.2) 
4 

and used them to relax ~b o, ~o in the following manner: 

r = COL2 (O!"*), /"("*) i=1,  4)+(1-o))r ") (3.3) 
O ( " + i ) = c o L  i (r "+~) ,I,("*) i=1,  4 ) + ( 1 - c o ) 0 ~  ) (3.4) 0 ~ " g i  ~ " ' ' ~  

In (3.3), (3.4) co is an overrelaxation factor ; #/(o"), r are the current and ~(0.+ 1), ((0.+ 1) the 
iterated values of ~, ~ at the (n+ 1)th iteration; n*= n + 1 if the corresponding ~"+ 1), (~.+ 1) 
was already computed in the course of the sweep ; otherwise we took n* = n. 

At boundary points other than AH, the interior of FG, and B, C, D, E, we used the formula : 

3 (~o-01)  (1 =. L3(O, ~) (3.5) 
~o-  h 2 2 

where o is a boundary point and 1 a neighbouring internal point in a normal direction. 
Following [1] we derived at C, D: 

~c = - h ~ [~k(-fi, y + h ) + ~ ( - f i - h ,  7)] - L 4 ( ~ )  (3.6) 

(o = - ~ [ ~ b (  fi, 7 + h ) + O (  fl+h, 7)]-L5(O).  (3.7) 

Let o be internal to FG with neighbouring points 1, 2, 3, 4, 5 (Figure 3). 

.3 

.5 .2 . 0  .1 

.4 Figure 3. 

Since 1 is outside the mesh, ~ , ,  ~1 should not appear in the final formulae for ~o, ~o. However 
we may use them in the calculation. 

First we replaced the second part of (2.12) by 

r _ 2 h  R ~/3~hh ~ / ~ 4  (~o--t- ~/3-t- 1~4-2@~ // (3.8) 

and then since (3.2) holds, eliminated r in terms of ~ ,  ~o, and (Oi, (i, i= 2, 3, 4): 

R 

r = (3.9) 

( 0 3 - 0 4 ) -  1 

We substituted this in (3.8) and finally got 

2C2+C3+C4 +  -(01-02)(C3-C4)-M - 

r = 

where M =R(03 - 04) and 0 l  = 0z- 

+04-20o 
h 2 

----- Z6( , 

(3.10) 
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The first condition of (2.12) was replaced by 

402- s 
q'~ - 3 = L (O) 

We used (3.5), (3.6), (3.7), (3.10), (3.11) to relax ~o, r by 

~(,+1)= oh~Li+(l_con)~(on), i = 3 , . ,  6 
O " "  

0 (2+ *) = co,,L  + (1 - 0(o ") 

where co B is a different overrelaxation factor. 

(3.11) 

(3.12) 

(3.13) 

b. Moderate and Large Reynolds Numbers 
In (3.2) R appears in the numerator only, and therefore we could not expect convergence for 

large Reynolds numbers. The technique developed in [1], practically a linearization of (2.6)- 
(2.7), leads to a convergent solution for all R. It introduces two finite sequences of discrete 
functions 

~(o), ~,(1) . . . .  , ~(k), ~(k+ 1) (3.14) 
~(0), ~(1), ..., ~(k), ~(k+l). (3.15) 

If for some tolerance e 

Iqj(k)--q/(k+ 1) I < e (3.16) 

[~(k)_ ~(k+t) I < e (3.17) 

at each point of the mesh, ~(~), ~(k) are taken as approximations to ~, ( respectively. 
However, in order to compute each ~(0 or ~(~), a complete relaxation procedure is needed. 

In terms of computer time, the method is inefficient, and unless one is satisfied with a rough 
mesh of h =~o, he may need many hours of computer time for each problem. 

We modified this technique by using direct relaxation like in case (a). 
Equation (3.1) remained the same. Determine the values 

H - - - ~ 1 - 0 2 ,  K = 03-~b4 �9 (3.18) 

If for example H >~ 0, K >i 0, ~ ,  (r in (2.7) were replaced by 

(o -  ~2 (3.19) 
~ -  h 

~3-~o (3.20) flY- h 

and (3.2) by: 
R + 5( 3n+ 2K) 

(o --- = Ls( 0, if). (3.21) 
R (H+K) 4 +  5 

The other three possibilities are described in detail in [1]. 
At boundary points other than those internal to FG the same formulae as in [1] had been 

used. At boundary points internal to FG (3.10) held and (3.11) has been replaced by the simple 
relation 

q,o -- ~,2. (3.22) 

During one complete iteration we followed [1] and used 1 as an overrelaxation factor for ~ at 
all grid points. We denoted the result by (('+ 1) and finally took 

~(,+ 1) = 0.3~(,+ 1)+ 0.7~(,). (3.23) 

The overrelaxation factor for ~ was taken as 1.8 for all grid points, and we finally had ([I])  : 
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0~,+ l) = 0.96 tp ("+ i) + 0.040(,) (3.24) 

This technique overcomes the instability of equation (3.2) by introducing R in both the numer- 
ator. and the denominator. Obviously we loose some accuracy, but the procedure leads to 
convergence for all R. 

4. Numerical Results 

For computations we used the CDC 3600, thus being able to compare our results to those 
obtained in [1]. 

We also chose/~= 1, 7=�89 h = 11-o, ~ ,  4-10 and compiled Table 1 for purposes of comparison. 
We calculated streamlines and vorticities for R = 0, 1, 10, 20, 50, 100, 200, 500, 1000 and 

sketched streamlines for R=0,  50, 500 and h=~o (Figures 4, 5, 6). 
One finds immediately that the running time used in [1] has been reduced by a factor of 10. 

This fact enabled us to solve the problem for a smaller h (~o, 4-t6) within a reasonable amount of 
computer time. We got highly accurate results, and also discovered an important effect that 
had been missing in [1]--a vortex near the corner B (-f l ,  0). 

TABLE 1 

R al a2 h Our approximate running time 
running time (min) in [1] (min) 

10 4 4 0.1 0.5 6 
50 4 4 0.1 0.3 8 

100 4 4 0.1 0.6 10 
200 4 4 0.1 1.1 12 
500 4 10 0.1 5 50 

1000 4 10 0.1 10 91 

CH.~I) 0.50 

0 8  / 

Figure 4. Streamlines for R = 0. 

(-1.5.1) 

(-I J) 

(2.~1) 

/'~ ~ 

Figure 5. Streamlines for R = 50. 

(-tS.I) (2.9)) 

~-IN 001 t i n  

GlJ) (t~ 

Figure 6. Streamlines for R = 500. 
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The vortex exists for R = 0 (Figure 4), then reduces (or diminishes completely) to some mi- 
nimum for a Rmin : 10< Rmin < 50 (Figure 5 ), and finally increases monotonically with R 
(Figure 6). In [1] the author used only h =~6o, and could not possibly discover this vortex for 
R < 200. 

The reduction in computer time may of course be increased. This depends on the ability to 
find optimal overrelaxation factors. However, this matter is another problem, and is under 
study. 
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